
The JavaScript Package Selection Task: A
Comparative Experiment Using ChatGPT

Hernan C. Vazquez
Faculty of Sciences
UNICEN University

Tandil, Buenos Aires, Argentina
hvazquez@exa.unicen.edu.ar

J. Andres Diaz-Pace
ISISTAN Research Institute

CONICET & UNICEN University
Tandil, Buenos Aires, Argentina

andres.diazpace@isistan.unicen.edu.ar

Antonela Tommasel
ISISTAN Research Institute

CONICET & UNICEN University
Tandil, Buenos Aires, Argentina

antonela.tommasel@isistan.unicen.edu.ar

Abstract—When developing JavaScript (JS) applications, the
assessment and selection of JS packages have become challenging
for developers due to the growing number of technology options
available. Given a technology need, a common developers’ strat-
egy is to query Web repositories via search engines (e.g., NPM,
Google) and shortlist candidate JS packages. However, these
engines might return a long list of results. Furthermore, these
results should be ranked according to the developer’s criteria.
To address these problems, we developed a recommender system
called AIDT that assists developers in the package selection task.
AIDT relies on meta-search and machine learning techniques to
infer the relevant packages for a query. An initial evaluation of
AIDT showed good search effectiveness. Recently, the emergence
of ChatGPT has opened new opportunities for this kind of
assistants, as reported by some experiments. Anyway, human
developers should judge whether the recommendations (e.g., JS
packages) of these tools are fit to purpose. In this paper, we report
on a user study in which we used both AIDT and ChatGPT on
a sample of JS-related queries, compared their results, and also
validated them against developers’ criteria and expectations for
the task. Our initial findings show that ChatGPT is not yet on
par with AIDT or even human efforts for the task at hand, but
the model is flexible to be improved and furthermore, it can
provide good arguments for its package choices.

Index Terms—Package Selection, JavaScript, Recommender
System, GPT Model, User Study.

I. INTRODUCTION

In software development in general, and JavaScript (JS)
applications in particular, the use of libraries and frameworks
can greatly improve developers’ productivity in terms of accel-
erating development cycles and delivering value to customers.
Nonetheless, choosing (and reusing) a JS package that fulfills
the needs of a development task can be a complex decision-
making activity for developers. This complexity stems from
the large number of technology options available in Web
repositories, such as NPM1 (Node Package Manager) [1].
Thus, JS developers have to regularly search, evaluate and
compare several packages for their applications, and keeping
up-to-date with technology becomes challenging. This activity
can be perceived as “technological fatigue”2 by developers.

The poor effectiveness of the JS search engines is a con-
tributing factor to technological fatigue, although these engines

979-8-3503-1887-6/23/$31.00 ©2023 IEEE
1https://www.npmjs.com/
2https://medium.com/@ericclemmons/javascript-fatigue-48d4011b6fc4

have been enhanced over the last years. Developers also resort
to general-purpose search engines (e.g., Google or Bing) with
the hope of having better results. However, the downside of
such engines is that they tend to return long lists of documents,
and developers have to navigate within each result to find
candidate JS packages. This leads to information overloading
issues. Furthermore, once developers identify a set of candi-
date packages, they must analyze each one to decide the best
fit for their needs. Normally, this decision is driven by package
features, such as popularity in the community, contributors, or
number of downloads, among others. Weighting these features
for comparison purposes is not straightforward. For instance,
NPM uses an AHP (Analytic Hierarchy Process) [2] technique
to compare JS packages.

In prior work, we proposed a recommender system called
AIDT3 to assist developers in searching and ranking JS
packages [3]. Given a developer’s query expressing a tech-
nological need, the problem consists in returning a ranking
of relevant packages that could satisfy the need of the query
– we refer to it as the JS package selection task. To tackle
this problem, AIDT first applies a meta-search strategy [4]
that combines results from multiple engines. Based on the
recovered packages, AIDT then ranks them by relevancy by
means of a Machine Learning (ML) model, which is built
using a pairwise learning-to-rank method [5]. The ML model
can infer a package ranking by analyzing features extracted
from JS projects on the Web (e.g., GitHub). We evaluated the
AIDT effectiveness on the NPM repository using a predefined
set of queries and a database with 1000 popular projects
from GitHub. In these experiments, we obtained an average
precision improvement of 20%, and the tool recovered a
larger number of relevant packages when compared to NPM.
Furthermore, AIDT showed the feasibility of using a data-
driven strategy, which can “learn” selection criteria from
features from the (open-source) JS community.

The emergence of assistive technologies based on Large
Language Models (LLMs), such as OpenAI’s ChatGPT,
GitHub’s Copilot or Google’s Bard, has brought new oppor-
tunities and challenges for the software community, particu-
larly for development-related tasks. Recent (and preliminary)

3Spanish acronym for Intelligent Assistant for Technology Decisions.

experiences evidence that these models can help in several
tasks, although they have limitations and pitfalls [6]. In par-
ticular, ChatGPT [7] works as an advanced general-purpose
searcher, which can provide recommendations, rankings, and
even justify those recommendations [8]. In this context, given
our previous experiences with AIDT, a natural question arises:
what is the ChatGPT performance in the package selection
task? Can it do better than humans, or than our tool? Thus,
in this paper, we focus on the tool capabilities to assist
developers in JS package selection tasks. We performed three
experiments, in which we asked a group of JS developers to
work with a sample of queries, and compared their results
against those produced by AIDT and ChatGPT for the same
queries, so as to assess the pros and cons of both tools in
this regard. From a more general perspective, since assistive
technologies are here to stay, we also discuss additional
concerns for a package recommendation system to be useful
to developers (e.g., contextual explanations of the items being
recommended), which go beyond the provision of an accurate
ranking of technologies.

The rest of the paper is organized into 5 sections as follows.
Section 2 motivates the search and ranking of JS packages, and
briefly describes the workings of the AIDT and ChatGPT
tools used in our evaluation. In Section 3, we outline the
study design, and then present the research questions and main
phases of the experimental procedures. Section 4 reports the
findings of our evaluation. Section 5 discusses related works,
while Section 6 concludes the paper.

II. THE PACKAGE SELECTION TASK

The selection of a software technology influences both the
development process and the quality of the final product [9].
The successful application of a given technology, such as a JS
package, means that its usage for a task produces a desired
objective [10]. This also depends on contextual features, such
as alignment between the developer’s need and the chosen
package, package maintenance support, or license type, among
others. For developing AIDT, we departed from two ideas.
First, the search and comparison of JS packages can take
advantage of multiple information sources. Second, existing
JS projects can provide useful information about criteria for
assessing the relevance of a given package. In the following,
we present a scenario of how the selection works in practice.

A. Motivating example

Let us consider a JS developer that needs to extract a
barcode from an image to automate a process for processing
codes from an image file. This scenario is illustrated in Figure
1. Initially, the developer goes to the NPM package repository
and submits the query “extract barcode from image” to a
search engine, which returns only the bytescout4 package as
output. Bytescout is a JS client for a cloud service. When
reading about bytescout, the developer realizes that it is a
paid service and that the JS client is not open-source. Also,
when looking at the description, NPM reports that bytescout

4https://bytescout.com/

has been downloaded 40 times in the last month, which might
indicate that it is not very popular in the JS community. Let us
assume that our developer is not convinced by these features,
or that they are not aligned with the project needs. However,
bytescout is the only technology returned by NPM. In this
context, several options arise: (i) adopt the package despite
disagreeing with its features, (ii) implement a solution for
reading barcodes from scratch, (iii) submit a modified query
to NPM to get more results, or (iv) rely on other information
sources (e.g., Google, NPMSearch, etc.) to find alternative
technologies. Let us suppose that our developer picks the
third option and re-phrases the query as “barcode reader”,
which makes NPM return 16 results this time. After inspecting
each result, the developer is still unconvinced about using any
of those technologies, since they do not seem very popular
nor have enough maintenance. The scenario so far shows the
current limitations of JS-specific search engines, like NPM.

Let us assume that our developer goes instead for the fourth
option and submits the query “extract barcode from image
javascript package” to Google. This query returns a list of Web
pages that are inspected by the developer to check whether
some JS packages are mentioned. In doing so, our developer
realizes that a package called QuaggaJS5 is referenced in three
results from the top-10 pages of the list. As the developer is not
aware of this technology, she goes back to the NPM repository
and finds that QuaggaJS is more popular than bytescout, it is
open-source and well-maintained by the community. At this
point, our developer can either pick QuaggaJS to fulfill the
development need, or keep looking for alternative packages.
This scenario illustrates the challenge of using general-purpose
search engines for JS packages, as well as the issues related
to their comparison.

B. The AIDT tool

AIDT [3] is a recommender system for the JS domain
that works in two stages, which are implemented by separate
modules: ST-Retrieval and ST-Rank, as depicted in Figure 2.

1) ST-Retrieval: This module takes a developer’s query
and returns a list of candidate JS technologies6 matching the
query. The query is written in natural language and speci-
fies a technological requirement (e.g., “extract barcode from
image”). The package retrieval is treated with a meta-search
strategy [4], in which the original query is sent in parallel to
several search engines, each returning an ordered list of items
for the query. AIDT relies on four engines to broaden the
scope of a query: NPM, NPMSearch7, Google, and Bing8.
Each engine returns a set of Web pages (or documents)
that might have references to zero or more JS packages.
The parsing and extraction of these references is seen as a
Named Entity Recognition (NER) task [11], which classifies
entities found in a given text into predefined categories (e.g.,

5https://serratus.github.io/quaggaJS/
6For simplicity, the words “package” and “technology” are used inter-

changeably as synonyms in the paper.
7https://npmsearch.com
8https://www.bing.com

q: query
r: results
[]: Web documents
[a, b]: named technologies
in Web documents

Technology
need Paid cloud service

Downloaded 40
times

Go back to NPM to get
details from Quagga

Well-maintained, popular
and open-source

Not well-maintained
Not very popular

Fig. 1: Example of JS package selection task using different search engines.

ST-Retrieval ST-Rank

JS Developer

Process query

Extract
technologies

Merge
technology

results

(1) Query

Repository of
technologies

Create dataset

Build ML ModelRank
technologies

Training
dataset

Ranking
model

(3) Application context

(2) Candidate technologies

(4) Ranking of candidate technologies

Collect data

ST-RankST-Retrieval

Query

Candidate packages

Package ranking

(Context)

ML Model
(learning to

rank)

Fig. 2: Overview of the recommendation modules of AIDT.

people, organizations, places, among others). In our work,
the named entity category is “software technology”, and we
apply string-matching rules for identifying named packages. In
our example, NPM returned one result (bytescout) matching a
package name in the repository. Unlike NPM, Google returned
an HTML document that was parsed for matches of package
names or addresses. In particular, the package name in the
resulting page (QuaggaJS) did not match any package in the
repository (quagga), but the site address got a related match
(home url, https://serratus.github.io/quaggaJS/).

Based on the named packages extracted, an ordered list
of packages per search engine is created. Table I shows an
example of the JS packages obtained from the NPM, Google
and Bing engines for the query “extract barcode from image”.
The individual lists are then combined into a single one using
a ranking aggregation function. We rely on the Borda Fuse
method for merging the lists [12]. In Borda Fuse, each search
engine is considered as a voter with a list of n ordered
candidates (i.e., the JS packages). For each list, the best first
candidate receives n points, the second candidate receives n-1
points, and so on. The points awarded by the different voters
are added, and the candidates are ranked in descending order
according to the total points obtained. Table I exemplifies
a Borda Fuse aggregation for our example, in which the
most relevant packages from the individual lists (quagga and

TABLE I: Borda Fuse aggregation example ([points] name).

NPM Google Bing Final list
[4] bytescout [4] quagga [4] quagga [8] quagga

[3] bcreader [3] bc-js [6] bytescout
[2] bytescout [2] bwip-js [4] bcreader
[1] jaguar [1] bcreader [3] bc-js

[2] bwip-js
[1] jaguar

bytescout) ended up at the top of the final list.

2) ST-Rank: This module takes the ST-Retrieval output
to refine it and produce a better ranking of JS packages.
This ranking is constructed by looking at package features
and decisions made by other JS projects. This information is
crawled from the NPM and GitHub repositories and stored in
a technology database. The rationale for incorporating these
features into a ranking is that if a package T was selected
in a project (over other available options), there should be a
criterion that renders T more relevant (than the other options)
that is derivable from the features. ST-Rank tries to learn this
selection criterion by means of a data-driven strategy.

A JS package P is represented by a number of predefined
features and its dependencies on other packages. To assemble
the dataset, we collected more than 40 features from NPM
and Github, including project stars, number of downloads,
dependent projects, developers contributing to the project,
subscribers, commits, files, or presence of tests, among others.
Furthermore, we assess the popularity of a technology T
by means of a metric called CDSel (Community Degree of
Selection), which models the relationship between the projects
in which T was selected and the relevance of those projects.
For example, in our database we obtained a CDSel value
of 396.192 for quagga, 15.646 for bytescout, and 1.791 for
bcreader; which would mean that quagga is selected more
often than bytescout and bcreader in the repositories.

The technology database is used for building an ML model
to rank JS packages. The training dataset contains a set of
training instances, each capturing a pair of technologies and
their associated features. Initially, a training ranking is com-

https://serratus.github.io/quaggaJS/

Fig. 3: Example of JS package selection task with ChatGPT.

puted for each technology according to its CDSel value. In our
example, quagga will be ranked first since its CDSel value is
higher than those for bytescout and bcreader. Then, each tech-
nology is mapped to a feature vector [FTi1, FTi2, ..., FTin]
where FT is an individual feature and n is the total number
of features. At last, for each pair Ti and Tj , a pair vector
(i.e., a training instance) is created as the concatenation of the
feature vectors for Ti and Tj . If Ti is more relevant than Tj ,
then the label 1 is assigned to the pair, or 0 otherwise. Based
on the training dataset, we apply a learning-to-rank technique
[5] that works on the instances as if it were a binary supervised
classification. The classification model is constructed with the
GBRank [13], a popular gradient-boosting algorithm for this
purpose. Once built, the ML model can predict the order for
any JS package pair, and the results are finally presented to
the developer.

C. The LLM tool: ChatGPT

Over the last few years, LLM technologies [14] have
improved the state of the art in several Natural Language
Processing (NLP) tasks, by leveraging internal knowledge,
and even without relying on external retrievers or further
training [15]. In this context, tools like ChatGPT [7] provide
new means for information seeking, for example, by allowing
users to interact with its underlying LLM, ask questions and
retrieve information. The emergence of LLMs can be seen as a
paradigm shift in research that facilitates in-context learning by
simply constructing natural language prompts or instructions
[14], [15]. These efforts contribute to further improve the rea-
soning capabilities and task generalization abilities of LLMs,
thereby fostering their application across various domains [8].

Related to our work, LLMs have also created a new
paradigm for recommendations based on user instructions [8].
Recommendations can be formulated as prompt-based tasks,
where information about users (e.g., developers) and items
(e.g., JS packages) gets integrated into personalized prompts

Te
st
in
g

P
re
pa
ra
tio
n

A
na
ly
si
s

Database creation
and model building

Query-based tasks

AIDT

Performance
comparison

queries

Screening
(questtionnaire) and

Introduction

Query-based tasks

Performance
comparison

JS DEVELOPERS

Qualitative criteria
analysis

queries

reference hits

Query-based tasks

ChatGPT

Performance
comparison

Qualitative criteria
analysis

queries

reference hits reference hits

Prompt
design

Fig. 4: Experimental design for humans, AIDT and ChatGPT.

as model inputs [8]. For instance, Figure 3 shows a possible
prompt and response for the query scenario of Figure 1. It
has been argued that LLMs could provide more natural and
explainable recommendations, helping to reduce the cold-start
problem, and providing cross-domain recommendations [8].
Nonetheless, given that LLMs have not been naturally trained
for making recommendations, the quality of the results might
suffer [16].

III. STUDY DESIGN

The goals of the study are: i) to assess the feasibility
of using assistive tools, like AIDT and ChatGPT, to deal
with the JS package selection task; and ii) to compare their
performance against that of human developers in terms of
relevance and ranking metrics. In addition to using ChatGPT,
this study also assesses AIDT, because its initial evaluation
[3] focused on search effectiveness but the results were not
contrasted with human rankings. To this end, we performed
three experiments, as depicted in Figure 4.

We addressed the following research questions:
• RQ#1: Are the rankings produced by the AIDT and
ChatGPT tools better than those produced by JS devel-
opers?

• RQ#2: Are there differences in the rankings of AIDT and
ChatGPT tools when compared to the human rankings?

• RQ#3: Which selection criteria are considered by JS
developers, and the AIDT and ChatGPT tools?

The experiments involved three phases: preparation, testing
and analysis, and were based on the schema of Figure 4. The
activities performed at each phase varied depending on the
nature of the experiment. For all the experiments, we defined
a baseline consisting of set of queries along with reference
rankings (of JS packages) for them. NPM was used as the
de-facto JS repository. For this baseline, we asked two senior
developers to record any queries in NPM that they would make
in their projects for a period of two weeks. After filtering out
some of their search results (to remove similar queries), we
obtained a reference set of 16 queries that represent a variety
of technological needs, as listed in Table II. After that, these

TABLE II: Reference queries used in the experiments.

Queries
check valid email address
quick sort algorithm
filter adult content images
user authentication
extract barcode from image
convert typewritten image to text
sentiment analysis
convert text to speech
calculate word similarity
translate english to spanish
credit card validation
captcha authentication
detect text language
DOM manipulation utils
lightweight 3D graphic library
mathematical functions

senior developers provide sets of JS packages, both relevant
and non-relevant ones, for the reference queries. The packages
in these sets were obtained from NPM and general-purpose
search engines. The reasons for including the packages in each
set were thoroughly discussed until reaching consensus. Two
of the authors participated in the process to refine the results
until the reference sets of relevant and non-relevant packages
for each query were established.

During the testing phase, each experiment required execut-
ing the queries above and collecting the resulting packages.
For answering RQ1# and RQ#2, the performance for the
three experiments was evaluated using traditional metrics such
as precision, recall, f-measure, MAP and nDCG, based on
the reference rankings. The metrics allowed us to assess the
relevance of the retrieved packages, but also the effectiveness
of the rankings by considering the package positions in such
rankings. A cut-off threshold was defined to select the top-
k recommended items, where k was set to 5. Thus, all
participants, AIDT and ChatGPT worked with 5 packages
for each query.

In this experimental setting, the participants did not interact
with the tools (e.g., NPM, Google, Bing, AIDT, ChatGPT)
directly, but rather the research team did it. This decision tried
to reduce the effects of tool learning or UX aspects and focus
on the performance of the retrieval task. For instance, the
UX design of AIDT is not as intuitive as that of ChatGPT.
This experimental uniformity had the tradeoff of making the
technology selection scenario somehow less realistic.

A. Experiment #1: JS Developers

This experiment was carried out with 21 participants, who
were asked to select and assess JS packages for a set of
reference queries. These participants were JS developers from
a graduate university course (in Argentina) having at least
5 years of development experience. During the preparation
phase, we performed an initial screening to determine the
participants’ level of knowledge and expectations with respect
to the study. In addition, each participant received a short
introduction to the context of the JS package selection task.

The participants were (randomly) assigned 5 queries each.
Internally, we ensured a coverage of all the queries in the
set. The queries were phrased as simple as possible. For
each assigned query, a participant had to select at least 5 JS
packages. In the activity, participants had freedom to choose
whatever search engine they judged convenient. They also
had to indicate the reasons for selecting and ranking the
packages. The maximum time allotted for the activity was
60 minutes. At the end, participants had to complete a post-
mortem questionnaire about their level of satisfaction and
opinions.

B. Experiment #2: AIDT

For configuring and training the ST-Retrieval and ST-Rank
modules, we initially downloaded the package registry from
NPM and built a database of technologies up to a given
date (September 2017). We ran ST-Retrieval 16 times on the
reference set (once per query) and stored the aggregated lists of
packages. When processing the results, we considered the first
20 documents from the lists of packages, as users searching the
Web (e.g., using Google) are very likely to consider only the
first pages. We ended up with a total of 2760 JS packages
retrieved. The dataset was enriched with package features
collected from Github. Furthermore, we relied on NPM and
NPMCompare for getting features and alternatives for each
package.

For ST-Rank, we created a set with ≈ 250 rankings, each
one having between 2− 6 packages. In total, more than 1000
training instances were obtained. To validate the rankings
produced by the ML model, we split them into training and
test sets with the usual 80− 20% partition rule of ML tasks.
For the test set, we randomly selected a 20% of the training
rankings (and their corresponding training instances). These
instances were verified by two senior developers. The remain-
ing 80% of the training instances constituted the training set
for building the GBRank model. A k-fold cross-validation
(k = 5) was performed to determine the best configuration
of hyper-parameters for the model. More details about the
construction of the AIDT pipeline can be found in [3]. It
should be noticed that the process of building the GBRank
model behind AIDT (particularly, ST-Rank) is effort-intensive
both in terms of human and computational work. Furthermore,
the model should be periodically re-trained with new queries
and features from the open-source JS community in order to
keep the recommendations current.

Since the ML model of AIDT works as a black box regard-
ing the predicted packages, it was not possible to perform a
qualitative analysis of the outputs in light of RQ#3.

C. Experiment #3: ChatGPT

This experiment was based on the GPT-3.5-turbo
model, which works both in traditional text completion tasks
and chat interactions. It allows an input of maximum 4,096
tokens and includes training data up to September 2021.
Prompts take the form of a chat conversation in which the
user role (i.e., a developer role) asks the model to perform a

task (i.e., a technology query). In preparation for the testing
phase, after an analysis and refinement of possible prompts,
we designed a schema to describe a JS-related requirement
and asked ChatGPT to recommend 5 packages for the target
requirement. We additionally extended the prompt to get a jus-
tification of recommendation. In line with RQ#3, we intended
to understand the selection criteria suggested by ChatGPT
for each item. To make results comparable and avoid missing
relevant packages due to new packages, we included a re-
striction in the prompt, requiring all recommended packages
to have been published before 2018. As for the experiment
with JS Developers, we asked ChatGPT to provide 3 qualities
for each retrieved package in the form of adjectives (to avoid
lengthy and non-focused phrases).

Based on the prompt shown in Figure 3, the prompt schema
was as follows: “As a developer, I want a JS package to
[extract a barcode from an image to automate a process for
processing codes from image files]. Return 5 suggested pack-
ages as a list. The packages must have been published before
2018. For each recommended package, include 3 adjectives
to justify the choice.”. The part in brackets was iteratively
substituted by the different queries in our reference set.

IV. EVALUATION AND FINDINGS

During the analysis phase, we evaluated the results of the
three experiments. The analysis focused both on performance
aspects (e.g., precision, recall, nDCG, and other metrics) as
well as on qualitative ones (e.g., differences between rankings,
selection criteria).

A. Performance

The distribution of results for all queries for the package
retrieval task are summarized in Figure 5, for the experiments
with the JS developers, ChatGPT, and AIDT. As the figure
shows, AIDT achieved the best performance, while ChatGPT
had, in general, lower performance than the human partici-
pants. The difference between precision, recall and nDCG in-
dicates that even when recommending non-relevant packages,
in general, the relevant ones were ranked high by the three
alternatives.

There were queries for which some alternatives did not
retrieve any of the relevant packages. For example, developers
did not select any of the relevant packages for “lightweight
3D graphic library”, AIDT did not recommend any relevant
package for “translate English to Spanish”, “calculate word
similarity”, “convert typewritten image to text”, “filter adult
content images” and “lightweight 3D graphic library”, while
ChatGPT was unable to recommend any relevant package
for almost half of the queries. Interestingly, ChatGPT made
recommendations of relevant packages for two of the queries
in which AIDT failed. This situation might imply that not all
queries are easy to satisfy. A manual inspection revealed that
in some cases only few packages were relevant (e.g., there
was only one relevant package for the “translate English to
Spanish” query), which hindered the achievement of that task.

(a) Relevance metrics

(b) Ranking metrics

Fig. 5: Comparison of performance metrics.

B. Differences in rankings

When comparing the rankings from the JS developers and
AIDT, we observed that AIDT achieved better results than
the developers, with average improvements of 89% (±194%)
and 127% (±246%) for precision and nDCG, respectively.
The only exceptions were for the “mathematical functions”
and “translate English to Spanish” queries, for which the
developers outperformed AIDT. Nonetheless, there was a
noticeable deviation in the precision and nDCG values for
the three alternatives. The largest differences were obtained
for the “quick sort algorithm” query. A manual inspection of
the rankings defined by the developers revealed non-existing
packages (i.e., items that did not belong neither to the relevant
nor to the non-relevant sets), whose names partially matched
more than one real package. This fact made it difficult to
distinguish which packages the developers referred to and,
consequently, underestimated their performance.

Regarding the rankings for the developers and ChatGPT,
we noticed that they achieved better results in 12 queries.
The largest differences were observed for the “mathematical
functions” query. Similarly, when comparing the rankings of
AIDT and ChatGPT, the former outperformed the latter in 10
queries, while achieving the same performance in 4 queries.

In average, AIDT had an improvement over ChatGPT of
76% (±70%) and 80% (±78%) in terms of precision and
nDCG, respectively. The missing packages in ChatGPT could
be related to the fact that the sources used for training its
model could have included a bigger recommendation space
than the one analyzed by the JS developers, the experts (for
the baseline) or AIDT, leading to candidate packages that were
unknown to the other parties. There is also a possibility that
ChatGPT might have returned inaccurate package names or
even non-existing packages [16].

Considering the relatively low performance observed for
ChatGPT, we performed an exploratory evaluation modifying
the original prompt, so as to provide a set of candidate
packages for each query (i.e., the sets of relevant and non-
relevant packages, as defined by the JS experts)9. The idea
was to help the model to narrow down the search space. With
this modification, ChatGPT was able to recommend relevant
packages for 5 additional queries, improving its average pre-
cision and nDCG by 146% (±144%) and 122% (±127%). It
is worth noting that for the “lightweight 3D graphic library”
query, the model worsened its results and did not recommend
any of the relevant packages. In addition, with the modified
prompt ChatGPT improved its performance with respect to
that of the JS developers in 14 queries, and regarding that
of AIDT in half of the queries. Figure 6 shows the metric
values after refining the prompt. This experience highlights the
importance of prompt design and how contextual information
can positively contribute to the task.

C. Selection criteria

As mentioned in Section III, the JS developers recorded the
main aspects they considered for selecting the packages. The
prompts for ChatGPT also asked for similar information for
the returned queries. Figure 7 summarizes the most common
criteria in this regard. To facilitate the analysis, we unified
these criteria into a common set of topics. The frequent and
shared topics by both the developers and ChatGPT were
related to: “compatibility”, “downloads”, “efficiency”, “full
documentation”, “functionality”, “performance”, “popularity”,
“reliability”, “simplicity”, “usability”, “versatility”. From this
set, we can see that the topics were related to quality-attribute
issues but also to some of the features used by the ML model
from AIDT. Certain topics (e.g., popularity, maintenance,
quality, or usability) had comparatively a higher frequency for
the developers (≈ 10− 15%) than in the ChatGPT responses
(≈ 5%), which might indicate a human emphasis, but it does
not mean that ChatGPT did not consider such criteria.

A further inspection of the developers’ responses revealed
that not every developer justified every package they chose.
Instead, they tended to provide criteria for the first three
packages (out of five). In most cases, criteria were expressed

9The prompt was modified as follows “As a developer, I want a JS package
to [extract a barcode from an image to automate a process for processing
codes from image files]. Given this set of packages [full set of relevant and
non-relevant packages], return 5 suggested packages as a list. The packages
must have been published before 2018. For each recommended package,
include 3 adjectives to justify the choice.”

(a) Relevance metrics

(b) Ranking metrics

Fig. 6: Comparison of performance metrics (with the modified
prompt for ChatGPT).

using one single word or expression, while only a few de-
velopers wrote longer phrases or even paragraphs. For most
criteria, it was clear when the developers highlighted a positive
aspect of a given package, although the expressions used
were ambiguous in some cases. For example, this was the
case of the “dependencies” topic, as it was unclear whether
developers were referring to packages having a low (i.e., a
positive aspect) or high number (i.e., a negative aspect) of
dependencies. Things got worse when a developer used that
sole criterion for multiple packages.

In addition, other developers defined “Best overall” as a
criterion without much description of its meaning, which
made the topic not comparable to others. We noticed that this
subjectivity in the criteria was less apparent in the ChatGPT
responses. There were subtleties among certain criteria, such
as “popularity” and “downloads” or “community”. Given that
the number of downloads or the size of the supporting commu-
nity could be indicators of package popularity, their differences
were unclear, particularly if used by the same developer.
ChatGPT also referred to the “popularity of packages”, but
there was no mention of the number of downloads nor the
supporting community.

(a) Top-15 selection criteria - JS Developers

(b) Top-15 selection criteria - ChatGPT

Fig. 7: Main topics identified in package choices. Common
topics are highlighted in red. Frequencies are normalized.

The selection criteria given by ChatGPT, in turn, were
repeated across the recommended packages for only four
queries, including repetitions for the first and last packages
in the ranking. All topics seemed to respond to positive
characteristics of the packages. The causes for the low topic
repetition (when compared to the humans’ topics) are unclear,
and might be due to the prompts used.

Overall, we can answer RQ#1 by saying that AIDT ex-
hibited a superior performance than both the JS developers
and ChatGPT, particularly in terms of relevant packages.
ChatGPT, in turn, seems to require more contextual informa-
tion to produce accurate recommendations. The analysis of the
package rankings produced by the different alternatives shed
light on their performance, thus answering RQ#2. Whereas
the behavior of ChatGPT has some flexibility, depending on
how the prompts are crafted, the behavior of AIDT is not
changeable once the ML is built. Finally, when addressing
RQ#3, the analysis of selection criteria for ChatGPT and the
JS developers revealed more uniformity (i.e., less ambiguity
and repetition) in the topics given by ChatGPT than in those
expressed by humans. Although more evaluation is needed,
our results create an opportunity for developers to rely on

ChatGPT for the package selection task, as a less biased but
still informative search engine.

D. Threats to Validity

A number of threats to internal, construct, and external
validity were identified in our study, which we tried to mitigate
whenever possible.

A first threat, to construct validity, is related to the queries
and technology searches used in the experiments. We intended
to use queries and search criteria being representative of real-
world JS development. The senior developers providing the
queries and checking the results might have been biased by the
type of software projects they usually work on. Along this line,
for AIDT, we collected a dataset from the NPM repository
using the JS package registry. Despite the low number of
queries, 2760 JS packages were returned by the search engines
and were manually analyzed. Since analyzing query results
might take a substantial amount of time from experts, we
preferred not to do a detailed query analysis in this work.
To mitigate threats to external validity, we considered queries
with different sizes and purposes in the experiments. However,
other queries or query phrases for specific domains could have
been used. Additional experimentation and surveys with JS
developers are still necessary in this regard.

Related to AIDT, the usage of Borda Fuse in ST-Retrieval
to rank the package lists is a threat to internal validity, as
this method might have biased the results and might have
affected the outputs of ST-Rank as well. Applying alternative
aggregation methods (e.g., Reciprocal Rank, Condorcet) could
have generated different package orderings.

In ChatGPT, the model could produce multiple responses
for the same query. This variation can be related to how the
prompt is provided, the training data or even an algorithmic
bias. This constitutes a threat to construct validity, as the
consistency of the recommendations or the package charac-
terizations (topics) could have been impacted. A potential
mitigation is to refine the initial query and carry out an iterative
dialogue to ensure consistent responses. We partially showed
how the prompts can be refined (to get a better performance
(e.g., in terms of relevance or quality) in the results provided
by the ChatGPT model), but we did not investigate the
problem systematically.

V. RELATED WORK

Various techniques have been developed to help select
software technologies [17]. Typically, these techniques involve
compiling a list of technologies, comparing them, and present-
ing a ranking to decision-makers. Certain studies have focused
on appraising pre-existing technologies but have disregarded
searching and acquiring technologies from (Web) repositories.
For instance, Ernst et al. [18] proposed a scorecard that assists
developers in selecting a particular component from a group
of predefined candidate components. This scorecard considers
evaluation criteria such as performance, maintenance, and
community support.

Software repositories [19] are one of the primary resources
for finding technologies. However, current repositories have
not been particularly successful in this regard as their search
engines often do not provide the desired outcomes. Several
studies have attempted to enhance the search mechanisms
provided by repositories. In this regard, a few studies share
similarities with our approach. Dolphin [20] considers open-
source projects, which are ranked based on the extent of
their impact (and how frequently they are mentioned) in
forum communities, such as StackOverflow or OSChina. The
main difference between Dolphin and our approach is that
Dolphin only considers open-source projects obtained from
version control repositories, while AIDT considers software in
repositories like NPM. Furthermore, Dolphin does not include
general-purpose search engines in the analyses, while AIDT
includes search results from Bing and Google.

LibFinder [21] employs multi-objective optimization to rec-
ommend Java libraries from GitHub and Maven repositories
based on source code. Nonetheless, search and recommenda-
tion are not guided by user queries. Instead, recommendations
are made based on analyzing the source code, aiming at dis-
covering libraries that could replace specific code fragments.
As Dolphin, LibFinder does not consider general-purpose
search engines. Soliman et al. [22] developed an approach to
retrieve architectural decisions and solution alternatives, em-
ploying StackOverflow as a repository of architecture knowl-
edge. It is based on a correlation between text (queries) and a
“de facto” ontology. Although interesting, the applicability of
this approach to JS technologies is still to be demonstrated.

Chen et al. [23] proposed a recommendation technique
that relies on a knowledge base extracted from curated Web
resources (such as Q&A posts from StackOverflow). Like
ST-Retrieval, developers’ queries are expressed in natural
language. Conversely, unlike ST-Rank, the approach computes
the similarity between the input and the candidate libraries
using word embeddings. The information sources examined in
this approach can complement the features defined in AIDT.
Li et al. [24] developed a related approach for searching JS
code snippets implementing a particular feature. However,
from a development standpoint, it should be noted that reusing
snippets is not the same (nor has the same difficulty) as
integrating JS packages.

Other works [25] have approached the ranking of tech-
nologies according to different criteria. Nonetheless, in most
works, the ranking strategies are manually defined based on the
features of the candidates. For example, Franch and Carvallo
[26] developed a structured quality model for evaluating
software packages. This model offers a taxonomy of quality
characteristics and metrics for calculating its worth according
to the domain at hand. Jadhav et al. [9] used an expert
system to combine ranking strategies based on AHP. Instead
of following a data-driven strategy, this approach requires
experts to define the ranking rules. Finally, Grande et al.
[17] conceptualized selection as a multi-objective optimization
problem and solved it by means of genetic algorithms.

Reports on using LLMs for software engineering tasks

are relatively recent [6]. Assistive tools like ChatGPT can
provide insights into how developers, users, and stakeholders
interact through natural language, leading to enhancements in
software development processes and results [27]. For exam-
ple, ChatGPT could be used to identify test cases or test
data, explain code fragments or models as a replacement for
traditional documentation, or simulate user interactions with
software systems to deal with user experience.

Ahmad et al. [28] studied the potential of ChatGPT to
assist software architects. To this end, the authors presented
a case study involving collaborations between architects and
ChatGPT for the architectural analysis, synthesis, and evalu-
ation of a microservices application. A preliminary evaluation
showed that ChatGPT was able to imitate the architect’s role
to support an architecting process by processing user sto-
ries, articulating architectural requirements, specifying models,
recommending tactics and patterns, and developing scenarios
for architecture evaluation. Nonetheless, the experiment still
needed a considerable dosage of human oversight and decision
support. White et al. [29] also leveraged ChatGPT to try to
automate common software engineering activities. The authors
designed a catalog of prompt patterns covering requirements,
system design and simulation, code quality and refactoring
tasks. Although this experience is potentially useful, the de-
fined patterns have not been yet validated.

VI. CONCLUSIONS

In this paper, we report on a series of experiments for the
JS package selection task, in which we evaluated the results
of a group of human developers, against those of the AIDT
and ChatGPT alternatives. Both tools work as recommender
systems for assisting developers in selecting, assessing and
ranking relevant packages. The tools have differences in their
conception. While AIDT was explicitly designed for the task,
ChatGPT is a general-purpose, emerging model that is able
to deal with this and other tasks. We performed a comparison
using a sample of predefined queries for JS repositories, and
then analyzed the rankings returned by each alternative. We
did not aim to arrive at statistically significant results from the
evaluation, but rather to investigate the pros and cons of the
tools and their underlying models.

The results of the experiments so far are enticing. On one
side, AIDT outperformed both the human developers and
ChatGPT, particularly in terms of precision. This might be
due to the specialized knowledge of the JS domain captured by
the ML model. AIDT has also shown improvements with re-
spect to traditional search engines. However, AIDT is currently
unable to explain its rankings, which can compromise the
developers’ trust on the results. On the other side, ChatGPT
showed a sub-optimal performance for the task, which seems
to be in line with other experiments [6], [16], [28], but it
was able to provide good arguments for its selection crite-
ria. Furthermore, its results (and performance, thereof) were
affected by how queries are expressed in the prompt. Thus,
we observed a tradeoff between having a specialized model
(like that of AIDT) versus a general-purpose one (like GPT or

similar LLMs). We believe that, provided with an appropriate
configuration (e.g., prompt, tuning), ChatGPT could generate
more satisfactory package rankings for developers. A related
aspect of ChatGPT is that its recommendations might change
according to the evolution of the available tools, their usage
and assessment by JS developers. In fact, for our experiments,
we restricted the recommendations up to 2018. This technol-
ogy evolution can be seen as a concept drift scenario that the
recommender system should take into account.

As future work, we plan to extend our study with subjects
interacting directly with ChatGPT, or other assistants such
as Google’s Bard, and also allowing newer JS packages
as candidates for the queries. In addition, we will further
investigate how to incorporate contextual information about
the developer’s need in the prompts, and also include in the
prompts the criteria identified in our qualitative analysis of the
experiments (e.g., performance, community support, number
of dependencies). A related line of research is an extension of
AIDT to support explanations of its predictions [30], using
the features of its ML model. Another interesting work is
the development of a LLM specialization [31] for the JS
technology domain [23].

REFERENCES

[1] E. Wittern, P. Suter, and S. Rajagopalan, “A look at the dynamics of the
javascript package ecosystem,” in Proceedings of the 13th International
Conference on Mining Software Repositories. ACM, 2016, pp. 351–
361.

[2] T. L. Saaty, “Decision making with the analytic hierarchy process,”
International journal of services sciences, vol. 1, no. 1, pp. 83–98, 2008.

[3] H. C. Vazquez, J. Diaz-Pace, S. A. Vidal, and C. Marcos, “A recom-
mender system for recovering relevant javascript packages from web
repositories,” in 2023 IEEE 20th International Conference on Software
Architecture (ICSA). Los Alamitos, CA, USA: IEEE Computer Society,
mar 2023, pp. 175–185.

[4] J. A. Aslam and M. Montague, “Models for metasearch,” in Proceedings
of the 24th annual international ACM SIGIR conference on Research and
development in information retrieval. ACM, 2001, pp. 276–284.

[5] H. Li, “Learning to rank for information retrieval and natural language
processing,” Synthesis Lectures on Human Language Technologies,
vol. 4, no. 1, pp. 1–113, 2011.

[6] B. Combemale, J. Gray, and B. Rumpe, “Chatgpt in software
modeling,” Software and Systems Modeling, May 2023. [Online].
Available: https://doi.org/10.1007/s10270-023-01106-4

[7] M. Abdullah, A. Madain, and Y. Jararweh, “Chatgpt: Fundamentals,
applications and social impacts,” in 2022 Ninth International Conference
on Social Networks Analysis, Management and Security (SNAMS).
IEEE, 2022, pp. 1–8.

[8] Y. Gao, T. Sheng, Y. Xiang, Y. Xiong, H. Wang, and J. Zhang, “Chat-
rec: Towards interactive and explainable llms-augmented recommender
system,” arXiv preprint arXiv:2303.14524, 2023.

[9] A. S. Jadhav and R. M. Sonar, “Framework for evaluation and selection
of the software packages: A hybrid knowledge based system approach,”
Journal of Systems and Software, vol. 84, no. 8, pp. 1394–1407, 2011.

[10] A. Birk, “Modelling the application domains of software engineering
technologies,” in Automated Software Engineering, 1997. Proceedings.,
12th IEEE International Conference. IEEE, 1997, pp. 291–292.

[11] D. Nadeau and S. Sekine, “A survey of named entity recognition and
classification,” Lingvisticae Investigationes, vol. 30, no. 1, pp. 3–26,
2007.

[12] C. Dwork, R. Kumar, M. Naor, and D. Sivakumar, “Rank aggregation
methods for the web,” in Proceedings of the 10th international confer-
ence on World Wide Web. ACM, 2001, pp. 613–622.

[13] Z. Zheng, H. Zha, T. Zhang, O. Chapelle, K. Chen, and G. Sun, “A
general boosting method and its application to learning ranking functions
for web search,” in Advances in neural information processing systems,
2008, pp. 1697–1704.

[14] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language mod-
els are few-shot learners,” Advances in neural information processing
systems, vol. 33, pp. 1877–1901, 2020.

[15] W. Yu, D. Iter, S. Wang, Y. Xu, M. Ju, S. Sanyal, C. Zhu, M. Zeng,
and M. Jiang, “Generate rather than retrieve: Large language models are
strong context generators,” arXiv preprint arXiv:2209.10063, 2022.

[16] Y. Zhang, H. Ding, Z. Shui, Y. Ma, J. Zou, A. Deoras, and H. Wang,
“Language models as recommender systems: Evaluations and limita-
tions,” 2021.

[17] A. D. S. Grande, R. D. F. Rodrigues, and A. C. Dias-Neto, “A
framework to support the selection of software technologies by search-
based strategy,” in Tools with Artificial Intelligence (ICTAI), 2014 IEEE
26th International Conference on. IEEE, 2014, pp. 979–983.

[18] N. Ernst, R. Kazman, and P. Bianco, “Component comparison, evalua-
tion, and selection: A continuous approach,” in International Conference
on Software Architecture Workshops. IEEE, 2019.

[19] N. Clayton, R. Biddle, and E. Tempero, “A study of usability of web-
based software repositories,” in Proceedings International Conference
on Software Methods and Tools. SMT 2000, 2000, pp. 51–58.

[20] Y. Zhan, G. Yin, T. Wang, C. Yang, Z. Li, and H. Wang, “Dolphin: A
search engine for oss based on crowd discussions across communities,”
in Software Engineering and Service Science (ICSESS), 2016 7th IEEE
International Conference on. IEEE, 2016, pp. 599–605.

[21] A. Ouni, R. G. Kula, M. Kessentini, T. Ishio, D. M. German, and
K. Inoue, “Search-based software library recommendation using multi-
objective optimization,” Information and Software Technology, vol. 83,
pp. 55–75, 2017.

[22] M. Soliman, M. Galster, and M. Riebisch, “Developing an ontology
for architecture knowledge from developer communities,” in Software
Architecture (ICSA), 2017 IEEE International Conference on. IEEE,
2017, pp. 89–92.

[23] C. Chen, S. Gao, and Z. Xing, “Mining analogical libraries in q&a
discussions – incorporating relational and categorical knowledge into
word embedding,” in 2016 IEEE 23rd International Conference on
Software Analysis, Evolution, and Reengineering (SANER), vol. 1, 2016,
pp. 338–348.

[24] X. Li, Z. Wang, Q. Wang, S. Yan, T. Xie, and H. Mei, “Relationship-
aware code search for javascript frameworks,” in Proceedings of the
2016 24th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, ser. FSE 2016. New York, NY, USA: Association
for Computing Machinery, 2016, p. 690–701.

[25] J. Klein and I. Gorton, “Design assistant for nosql technology selection,”
in Proceedings of the 1st International Workshop on Future of Software
Architecture Design Assistants. ACM, 2015, pp. 7–12.

[26] X. Franch and J. P. Carvallo, “A quality-model-based approach for
describing and evaluating software packages,” in Proceedings IEEE Joint
International Conference on Requirements Engineering. IEEE, 2002,
pp. 104–111.

[27] M. A. Akbar and A. A. Khan, “Ethical aspects of chatgpt in software
engineering research.”

[28] A. Ahmad, M. Waseem, P. Liang, M. Fahmideh, M. S. Aktar, and
T. Mikkonen, “Towards human-bot collaborative software architecting
with chatgpt,” ArXiv, vol. abs/2302.14600, 2023.

[29] J. White, S. Hays, Q. Fu, J. Spencer-Smith, and D. C. Schmidt, “Chatgpt
prompt patterns for improving code quality, refactoring, requirements
elicitation, and software design,” arXiv preprint arXiv:2303.07839,
2023.

[30] Y. Zhang and X. Chen, “Explainable recommendation: A survey and
new perspectives,” Found. Trends Inf. Retr., vol. 14, no. 1, p. 1–101,
mar 2020.

[31] F. F. Xu, U. Alon, G. Neubig, and V. J. Hellendoorn, “A systematic
evaluation of large language models of code,” in Proceedings
of the 6th ACM SIGPLAN International Symposium on Machine
Programming, ser. MAPS 2022. New York, NY, USA: Association
for Computing Machinery, 2022, p. 1–10. [Online]. Available:
https://doi.org/10.1145/3520312.3534862

https://doi.org/10.1007/s10270-023-01106-4
https://doi.org/10.1145/3520312.3534862

	Introduction
	The Package Selection Task
	Motivating example
	The AIDT tool
	ST-Retrieval
	ST-Rank

	The LLM tool: ChatGPT

	Study Design
	Experiment #1: JS Developers
	Experiment #2: AIDT
	Experiment #3: ChatGPT

	Evaluation and Findings
	Performance
	Differences in rankings
	Selection criteria
	Threats to Validity

	Related Work
	Conclusions
	References

